ACM DL

ACM Transactions on

Internet Technology (TOIT)

Menu
Latest Articles

On the Profitability of Bundling Sale Strategy for Online Service Markets With Network Effects

In recent years, we have witnessed a growing trend for online service companies to offer... (more)

A Dynamic Data-throttling Approach to Minimize Workflow Imbalance

Scientific workflows enable scientists to undertake analysis on large datasets and perform complex scientific simulations. These workflows are often... (more)

Social Network De-anonymization: More Adversarial Knowledge, More Users Re-identified?

Previous works on social network de-anonymization focus on designing accurate and efficient de-anonymization methods. We attempt to investigate the intrinsic relationship between the attacker’s knowledge and the expected de-anonymization gain. A common intuition is that more knowledge results in more successful de-anonymization. However,... (more)

Integrating Multi-level Tag Recommendation with External Knowledge Bases for Automatic Question Answering

We focus on using natural language unstructured textual Knowledge Bases (KBs) to answer questions... (more)

NEWS

About TOIT

ACM Transactions on Internet Technology (TOIT) brings together many computing disciplines that contribute to Internet systems and technologies, including computer software engineering, computer programming languages, computer middleware and systems, computer networking and communications, database management, distributed systems, knowledge discovery and data mining, machine learning and AI as a service, security, privacy, performance and scalability, etc. TOIT welcomes the innovative research results from both the individual disciplines and the interactions among them.

read more

 

 

Forthcoming Articles
Constructing Novel Block Layouts for Webpage Analysis

Webpage segmentation is the basic building block for a wide range of webpage analysis methods. The rapid development of Web technologies results in more dynamic and complex webpages, which brings new challenges to this area. To improve the performance of webpage segmentation, we propose a two-stage segmentation method that can combine visual, logic and semantic features of the contents on a webpage. This two-stage method can effectively conduct webpage segmentation on complicated and dynamic webpages. The experiment results show that the proposed method significantly outperforms the existing state-of-the-art in terms of higher precision, recall and accuracy.

Universal Social Network Bus: Towards the Federation of Heterogeneous Online Social Network Services

Online social network services (OSNSs) are changing the fabric of our society, impacting almost every aspect of it. Over the last decades, multiple competing OSNSs have emerged. As a result, users are trapped in the walled gardens of their OSNS, encountering restrictions about the people they can interact with. Our work aims at enabling users to meet and interact beyond the boundary of their OSNSs. We introduce USNB -Universal Social Network Bus which revisits the "service bus" paradigm to address the requirements of social interoperability.

Trust Prediction via Matrix Factorization

We propose PTP-MF (Pairwise Trust Prediction through Matrix Factorization), an algorithm to predict the intensity of trust/distrust relations in Online Social Networks. The PTP-MF algorithm maps each user i onto two low-dimensional vectors, namely, the trustor profile (describing her/his inclination to trust others) and the trustee profile (modelling how others perceive i as trustworthy) and computes the trust j places in j as the dot product of trustor profile of i and the trustee profile of j. Experiments indicate that the PTP-MF algorithm is more accurate than the state-of-the-art approaches (up to 9.65%) and scales well on real life graphs

Threat Management in Data-Centric IoT-Based Collaborative Systems

In this paper, we propose a Threat Management System (TMS) for Data-driven Internet-of-Things-based Collaborative Systems (DIoTCS). The novelty of the system is that it con nes the damage into partitions generated for the global dataset shared by the DIoTCS applications. We formulate the partitioning problem as a cost-driven optimization problem, which is proven to be NP-hard. Accordingly, two heuristics are proposed to solve this problem. For TMS, we propose response and recovery subsystems. We evaluate TMS experimentally and demonstrate that intelligent partitioning of global dataset improves the overall availability of the DIoTCS.

Source-aware Crisis-relevant Tweet Identification and Key Information Summarization

In this paper, we propose an automatic labeling approach to distinguish crisis-relevant tweets while differentiating source types (e.g., government or personal accounts) simultaneously. We first analyze and identify tweet-specific linguistic, sentimental and emotional features based on statistical topic modeling. Then,we design a novel correlative convolutional neural network which uses a shared hidden layer to learn effective representations of the multi-faceted features. The model can discover salient information robust to the variations and noises in tweets and sources. To obtain a bird-view of crisis event, we further develop an approach to automatically summarize key information of identified tweets.

Policy Adaptation in Hierarchical Attribute-Based Access Control Systems

In Attribute-Based Access Control (ABAC), access to resources is given based on attributes of subjects, objects, and environment. There is an imminent need for the development of efficient algorithms that enable migration to ABAC. However, existing policy mining approaches do not consider possible adaptation to the policy of a similar organization. In this article, we address the problem of automatically determining an optimal assignment of attribute values to subjects for enabling the desired accesses to be granted while minimizing the number of ABAC rules used by each subject. We show the problem to be NP-Complete and propose a heuristic solution.

Understanding The Influences of Past Experience on Trust in Human-Agent Teamwork

This study empirically investigates the impact of past experience on human trust in and reliance on agent teammates. We developed a repeated team coordination game, in which two players repeatedly cooperate to complete team tasks. The results show that positive (negative) past experience increases (decreases) human trust in and reliance agent teammates; lack of past experience lead to higher trust levels compared to positive past experience. These findings provide clear and significant evidence and enhance our understanding of the changes in human trust in peer-level agent teammates with respect to past experience

The influence of trust score on cooperative behavior

Trust is essential for collaboration. General reputation and ID mechanisms may support users trust assessment. However, they lack sensitivity to pairwise interactions and specific experience such as betrayal over time. Moreover, they place an interpretation burden that does not scale to dynamic, large-scale systems. While several pairwise trust mechanisms have been proposed, no empirical research examines trust scores influence on participant behavior. We study the influence of showing a partner trust score and/or ID on participants behavior in a trust game experiment. We show that the trust score availability has the same effect as an ID to improve cooperation.

CloseUp: Community-Driven Live Online Search

Search engines cannot answer time and location-specific queries; this often requires humans on-site. While community question answering (CQA) platforms are popular, few exceptions consider users physical locations. Here, we present CloseUp, our prototype for the integration of community-driven live search into a Google-like search experience. We bridge the gap between Web search and CQA, namely the formulation of search requests and the expected response times. CloseUp features a deep learning pipeline to translate relevant queries into questions. CloseUp provides a mobile application for submitting and replying to questions. Using a field study, we evaluated the feasibility of our approach.

All ACM Journals | See Full Journal Index

Search TOIT
enter search term and/or author name